
TinyBuilder

Reference Guide

Beta

Copyright © 2023, Tiny Management, Inc. All rights Reserved

Table of Contents
Introduction

The Parser
Tokenization

Parser Databases
Character Encoding

Parsers

The Build Log
The Document Root

Connection Information
The Job List

The Command List
The Command Output

The Output List

TinyBuilder Service
The Work Area

Security
Abstract Servers
Error Handling
The Path Cache

Windows Development Environments
Managing the Service on Linux

Managing the Service on macOS
Managing the Agent on macOS

Managing the Service on Windows
Managing the Agent on Windows

SSH Integration
Specifying a User Name

Troubleshooting

1

2
2
4
4
5

37
37
38
39
41
42
45

47
47
48
49
50
51
52
52
54
54
55
56

57
58
59

1

Introduction

The TinyBuilder documentation comes in three parts, a user guide, a reference
guide, and for the non-Windows platforms, man pages.

The user guide is intended to be the most used document. It provides the
information needed to build and maintain a working build system that makes
optimal use of TinyBuilder, without the details that are only relevant for diag-
nosing problems. The user guide begins with the TinyBuilder script, which is a
simple and elegant way to describe a build, followed by the method used to con-
struct command lines. The user guide continues with a brief description of the
build log format, an xml based format designed to be both human and machine
readable. The client and agent chapters of the user guide describe how to use
those components, and finally, the user guide ends with a brief story describing
the evolution of a fictional build.

The reference guide is intended to be useful only on the occasions when a
difficult problem needs to be solved. The reference guide begins with a detailed
explanation of the parser, which is helpful for explaining text encoding issues
and error messages, followed by a comprehensive description of the build log
format. The next chapter goes into a detailed explanation of the operation of the
TinyBuilder service and agent, for use by system administrators who wish to diag-
nose problems or run tests on exotic platforms. The reference guide ends with a
chapter detailing the integration of ssh into TinyBuilder to provide authentica-
tion and encryption.

The man pages are intended to be a quick reference where they are available.
While not particularly informative, they will provide the exact spellings of envi-
ronment variables and command line options. They can also serve as a prompt
for more complex concepts explained elsewhere. While not normally used, the
man pages will provide the command line interface of the service executables
on Linux and macOS; the Windows service and agent have no command line
interface.

2

The Parser

This chapter describes the details of the functionality of the TinyBuilder script
parser. The purpose of this chapter is to disambiguate the user guide and docu-
ment the handling of various corner cases and obscure features.

The TinyBuilder parser consists of a tokenizer along with a set of small parsers.
The tokenizer is responsible for segmenting the script into tokens and text. The
token is a fixed string that identifies the parser to use; the text is passed to the
parser. The parser is a small piece of code that updates structures with what it
finds in the text. The parser can supply the tokenizer with a new set of tokens to
look for, which identify another set of parsers. When a block ends, the tokenizer
signals the parser of the end of the block.

The parser code never handles a new line; the tokenizer uses new lines as
delimiters and does not pass the new line code points to any parser. As a result,
tokens and text cannot span lines.

Tokenization

The tokenizer is a component of the TinyBuilder script parser that provides struc-
ture for the rest of the parser. While part of the parser, it is largely decoupled from
the rest of the parser code. The tokenizer determines the block boundaries and
signals the parsers when blocks begin and end. The tokenizer divides the script
into tokens and text; tokens are used to identify the relevant parser code, while
text is processed by the parsers. The text passed to the parser may or may not be
empty and may not span a new line. A sequence of spaces (utf-8 code point 0x20)
within a token is consolidated to a single space; spaces within text is interpreted
by the parser code.

A root block is a block with no indention. The root block must begin with one
of the project, job, step, import, machine, data or file list tokens
followed by text. The root block contains zero or more embedded blocks, and an
embedded block may contain zero or more embedded blocks. Each root block is
finalized at the next root block or at the end of the script. The root block along
with its embedded blocks may be considered a tree which the tokenizer traverses

3

The Parser

in depth first order.

Any new block at the root must start with a known token; children blocks may
or may not be identified by tokens. When a line has greater indention than the
previous line, a new child block is started. The rules regarding what children
blocks a block may have is specified by the parent block; children parsers may
be identified by tokens, or the children of a block may be entirely text. A token
identifies the parser responsible for the block, which is initialized when the block
has started. Text may or may not follow the token; this is specified by the parser
identified by the token.

A block is finalized when the line has a lesser or equal indention to the parent
block; a line with equal or lesser indention signals the tokenizer traversal to go
up the tree one or more levels. If the indention is equal to the indention of the
previous line, the tokenizer only goes up one level of the tree and only one block
is finalized; it is valid for a block to have no content. While the indention is less
than the indention of the previous line, the tokenizer moves further up the tree
until it finds a block of equal indention to the line. All blocks are finalized as the
tokenizer goes up the tree, including the block with equal indention. The parser
uses its finalization to check if it is complete and valid; if validation fails, parsing
of the script fails. If no block with equal indention can be found as the tokenizer
goes up the tree, parsing of the script fails.

Only spaces (utf-8 code point 0x20) are accepted for indention.

Tokens and text cannot span lines; the tokenizer treats the new line as a delim-
iter and never passes a new line as text; since parsers never see new lines, they are
more platform independent; the variety of methods to define a new line is strictly
handled by the tokenizer.

Section 5.8 of the Unicode standard identifies the following code points as new
lines:

 Acronym Name Code Point
 CR carriage return 000D
 LF line feed 000A
 CRLF carriage return/line feed 000D, 000A
 NEL next line 0085
 VT vertical tab 000B
 FF form feed 000C
 LS line separator 2028
 PS paragraph separator 2029

4

The Parser

All of the above are treated equally by the tokenizer as end of lines. The CRLF
sequence is treated as a single end of line.

If the first character after a sequence of zero or more spaces is “#”, the line is
a comment line. All remaining characters in the line are ignored and not parsed.
The indention is irrelevant; a comment cannot start or finalize a block. If the “#”
is preceded by a character other than a space, the “#” will be part of the text of the
line; it will never begin a comment unless only spaces occur on the line before
“#”.

Parser Databases

The TinyBuilder script parser makes use of three in-memory databases, the object
database, the machine database and the import database. All three use a name as
the key within the database; the name is a sequence of utf-8 code points; no case
folding, composition or decomposition is done. Duplicate names are not permit-
ted within any database.

The object database is used to store project, job, step, data and file
list blocks as values with a name as the key. These blocks can then be refer-
enced by other blocks.

The key in the machine database is the name of the machine block, which is
referenced by the names in the job’s machine block. Since the machine database
is separate from the object database, an object may have the same name as a
machine without problem.

The key in the import database is the absolute path of the imported script;
there is no associated value, only names. The purpose of this database is to iden-
tify scripts that have already been imported so they are not imported again.

Character Encoding

The script is utf-8 encoded. Case folding is never done; all string comparisons
are case sensitive. Composition and decomposition are never done; it is assumed
the editor used to edit the scripts will handle code points consistently. The utf-8
encoding scheme specifies that some byte sequences are not valid. The tokenizer
checks the bytes of the script as it reads them; if it encounters a byte sequence
that is not valid according to the utf-8 encoding, the script parsing will fail. The
tokenizer considers the utf-8 encoding of the Unicode BOM (0xfeff) to be a valid

5

The Parser

character, but it is ignored regardless of where it appears in the script.

This chapter refers to character literals using double quotes, such as “#”. These
character literals are always the utf-8 code points with ascii equivalents; alter-
natives, i.e. the Arabic comma, are never considered equivalent to the character
literals in this chapter. The character sequence “<0x20>” is used to represent a
sequence of one or more utf-8 spaces with the value 20 in hexadecimal; in other
words, a sequence of one or more ascii spaces.

Parsers

This section lists the parsers used by the tokenizer. Each parser is documented
with an initialization, a finalization, a text handling and a token to parser map-
ping section. The initialization section describes how the parser is initialized and
the interpretation of any text appearing after the parser’s token. It is possible for
initialization to fail. The finalization section describes any checks that occur when
the block handled by the parser is finalized. The text handling section describes
how the parser treats text within its block; it does not include text on the same
line as the token. The token to parser mapping is a list of tokens the parser accepts
along with their corresponding parsers.

Tokens are formatted as follows:

This<0x20>is<0x20>a<0x20>token<0x20>

Spaces within the token are represented by <0x20> to highlight the fact that
only the ascii space is accepted; any other valid utf-8 spaces, like no break space,
zero width space, em space, etc are not accepted as a space. Also, <0x20> rep-
resents a sequence of one or more ascii space bytes.

The script directory referred to by the parser documentation is the directory
containing the script containing the block.

If any parser fails, the TinyBuilder client will fail with a parsing error. Failure
can occur at any time.

6

The Parser

root

The root parser is responsible for the root blocks in the script.

Initialization

The object, machine and import databases are initialized as empty.

Finalization

No checks are performed during root finalization.

Text Handling

Only tokens are handled by the root parser; any text will cause the parser to fail.

Token to Parser Mapping

Token Parser
data<0x20>data-block-name data_block
file<0x20>list<0x20>file-list-block-name file_list
import<0x20>import-script-path import_parse
job<0x20>job-block-name job_parser
machine<0x20>machine-block-name machine_block
project<0x20>project-block-name project_parser
step<0x20>step-block-name step_parser

7

The Parser

command_argument

The command_argument parser accepts a command during initialization and
command line arguments as its children.

Initialization

The line passed to the command_argument parser during its initialization is the
executable. While this may include a relative or absolute path, the parser treats
the text as a literal; path separators will not be adjusted for the machine. If no
path separators (as interpreted on the machine side) are present, the machine
will search the path for the executable provided. Otherwise, if a relative path is
specified, the path is relative to the job directory in the work area.

Path separators within command line arguments are not interpreted by the
client and will remain as they are in the script, regardless of the path separators
used on the machine. The commands running on the machine will interpret the
command line arguments, not the client.

The command_argument parser initialization will fail if the expansion options
parsing fails.

The command_argument parser receives a lookup callback from the parent
parser, which may be a job or a step parser. The interpretation of names are dif-
ferent for the different parents.

Finalization

The following checks are made:

If the directory<0x20>name and file<0x20>name expansion options are
used on the same expansion, parsing fails.

If the environment expansion option is used with any of the enumerate,
required, base<0x20>name, file<0x20>name, or directory<0x20>name
expansion options, or if the expansion has text, the TinyBuilder client is unable
to expand the command and parsing fails.

If the expansion has the enumerate<0x20>along<0x20>name expansion
option, another expansion with the name must exist and have an enumerate
option that is not an enumerate<0x20>along<0x20>name or parsing will fail.

8

The Parser

All the expansions with enumerate and enumerate<0x20>within expansion
options must form a single chain of expansions with no cycles, or parsing fails.

Text Handling

Commands and arguments may contain zero or more expansions. The start of an
expansion is signaled using “<” and the end of the expansion is signaled using
“>”. Either character cannot be in a name. An additional “<” at the start of the
expansion signals the start of an expansion option list, which are delimited by “,”
and terminated with “>”. Expansion options are optional; unrecognized expan-
sion options will cause parsing to fail. Zero or more ascii spaces are permitted
between any delimiter, expansion option and name; names will not have leading
or trailing spaces. Empty expansion option lists or an expansion without a name
will cause parsing to fail.

The following are accepted as expansion options:

base<0x20>name
base<0x20>names
directory<0x20>name
directory<0x20>names
enumerate
enumerates
enumerate<0x20>along
enumerates<0x20>along
enumerate<0x20>within<0x20>name
enumerates<0x20>within<0x20>name
environment
file<0x20>name
file<0x20>names
required

Token to Parser Mapping

The command_argument parser does not recognize any tokens.

9

The Parser

data_block

The data_block parser parses root data blocks.

Initialization

Initialization will fail if the token’s text is empty, since the data block must have a
name. Initialization will fail if another object in the parser’s object database has
the same name as the token’s text. If the checks succeed, a data_block parser is
added to the object database with the token’s text as the key.

Finalization

There are no checks when the data_block parser is finalized.

Text Handling

No text is permitted by the data_block parser.

Token to Parser Mapping

Token Parser
include data_include_data
includes data_include_data
include<0x20>with<0x20>name<0x20>name
 named_data_include_data
includes<0x20>with<0x20>name<0x20>name
 named_data_include_data
path data_path
paths data_path
value data_value
values data_value

10

The Parser

data_include_data

The data_include_data includes other blocks into a data block.

Initialization

There are no checks during data_include_data initialization.

Finalization

No checks are performed during data_include_data finalization.

Text Handling

Each line is interpreted to be a name in the parser’s object database. If the name
cannot be found, parsing fails. The type of the found block is checked. If the block
is not a data block, parsing fails.

The including data block is searched for each name in the included block. If
the name is not found, the name and its values are copied to the including data
block. If the name is found, the type is checked. If the including value is a data
value and the included value is a path value, or if the including value is a path
value and the included value is a data value, parsing will fail. If the types are the
same, the values associated with the name are appended to the values already in
the including block.

Token to Parser Mapping

There are no tokens within a data_include_data block.

11

The Parser

data_path

The data_path parser adds path values to a data block.

Initialization

There are no checks during data_path initialization.

Finalization

There are no checks during data_path finalization.

Text Handling

Each line is interpreted as a name value pair. The parser searches for an “=” char-
acter; if no “=” is found, parsing fails. If the first character is “=”, parsing fails. If no
character follows the “=” on the line, parsing fails. Once an “=” is found, the trail-
ing spaces are stripped from the name. The data block is searched for the name.
If the name is found and the value is not a path value, parsing fails. If the name is
not found and the name contains “<” or “>”, parsing fails. If the name begins with
“TB “, parsing fails; names starting with “TB “ are reserved.

The value is added to the list of values associated with the name. If there is
a trailing space after the name, the leading spaces are removed from the value.
The value is treated as a path relative to the script directory; both “/” and “\” are
considered to be path separators. If the value is an absolute path, parsing fails.
The value is appended to the script directory and then normalized to remove any
unneeded “.” or “..” directories.

Token to Parser Mapping

There are no tokens within a data_path block.

12

The Parser

data_value

The data_value parser adds data values to the data block.

Initialization

There are no checks during data_value initialization.

Finalization

There are no checks during data_value finalization.

Text Handling

Each line is interpreted as a name value pair. The parser searches for an “=” char-
acter; if no “=” is found, parsing fails. If the first character is “=”, parsing fails. If no
character follows the “=” on the line, parsing fails. Once an “=” is found, the trail-
ing spaces are stripped from the name. The data block is searched for the name.
If the name is found and the value is not a data value, parsing fails. If the name is
not found and the name contains “<” or “>”, parsing fails. If the name begins with
“TB “, parsing fails; names starting with “TB “ are reserved.

The value is added to the list of values associated with the name. If there is a
trailing space after the name, the leading spaces are removed from the value.

Token to Parser Mapping

There are no tokens within a data_value block.

13

The Parser

development_environment

The development_environment parser sets the job’s development
environment.

Initialization

If the development environment was already set for the job, parsing fails. If no
development environment name was provided, parsing fails.

Finalization

No checks are made during development_environment finalization.

Text Handling

The development_environment parser does not allow any text.

Token to Parser Mapping

The development_environment parser does not recognize any tokens.

14

The Parser

file_file_list

The file_file_list is responsible for parsing the paths within the files
block within a file list block.

Initialization

There are no checks during file_file_list initialization.

Finalization

There are no checks during file_file_list finalization.

Text Handling

The text is interpreted as a file path, relative to the script directory. Both “/” and
“\” are accepted as path separators. If the path is an absolute path, parsing fails;
otherwise, the file path is converted into a normalized absolute path and is added
to the file list.

Token to Parser Mapping

There are no tokens within a file_file_list parser block.

15

The Parser

file_list

The file_list parser parses file list blocks.

Initialization

Initialization will fail if the token’s text is empty, since the file list must have a
name. Initialization will fail if another object in the parser’s object database has
the same name as the token’s text. After the above checks, a file_list parser is
added to the object database with the token’s text as the key.

Finalization

There are no checks during file_list finalization.

Text Handling

Only tokens are recognized by the file_list parser; all unrecognized text will
cause parsing to fail.

Token to Parser Mapping

Token Parser
file file_file_list
files file_file_list
include include_file_list
includes include_file_list

16

The Parser

import_parse

The import_parse parser is responsible for parsing import blocks.

Initialization

Parsing will fail if the import<0x20> token is not followed by any text. The
path is normalized based on the script directory. On non-Windows platforms, the
absolute path is stored in the import database. On Windows, the file is opened
and GetFileInformationByHandleEx is called to find identifiers of the file.
These identifiers, and not the path, are used as the key into the import database.

Finalization

If the script has already been imported, nothing else is done during finalization.
The script path on non-Windows, or the serialized file identifiers on Windows,
are used as the key as the import is added to the import database. No valid value
is stored in the import database. A new tokenizer is created to parse the imported
script. If the parsing of the imported script fails, finalization fails.

Text Handling

No text is permitted within an import_parse block.

Token to Parser Mapping

No tokens are permitted within an import_parse block.

17

The Parser

include_file_list

The include_file_list is responsible for importing file lists into a file list.

Initialization

There are no checks during include_file_list initialization.

Finalization

There are no checks during include_file_list finalization.

Text Handling

Each line is interpreted to be a file list block name. If the name is not in the
object database, parsing fails. If the name points to a non-file list, parsing fails.
Otherwise, each path in the included file list is copied to the including file list.
The files in the included file list are already absolute paths; no update of the
paths is needed.

Token to Parser Mapping

There are no tokens within a include_file_list block.

18

The Parser

job_parser

The job_parser parser is responsible for parsing job blocks.

Initialization

Initialization will fail if the token’s text is empty, since the job block must have a
name. Initialization will fail if another object in the parser’s object database has
the same name as the token’s text. If the checks succeed, a job_parser is added
to the object database with the token’s text as the key.

Finalization

If no machine has been assigned to the job, parsing fails. If the job concurrency
has not been set, it is set to medium. The script directory is stored as the job’s
home directory.

Text Handling

No text is permitted within a job_parser.

Token to Parser Mapping

When the job_parser delegates a child block to the step_command parser, the
lookup callback records the mapping from the parameter position to the param-
eter name. If the expansion names a data or path value that does not exist when
the command is expanded, parsing will not fail. See the Command Generation
chapter in the user guide for more details.

Token Parser
command<0x20>break<0x20>on<0x20>error
 step_command
commands<0x20>break<0x20>on<0x20>error
 step_command
command<0x20>complete<0x20>with<0x20>error
 step_command
commands<0x20>complete<0x20>with<0x20>error
 step_command
command<0x20>ignore<0x20>error step_command
commands<0x20>ignore<0x20>error step_command
concurrency<0x20>high job_parser_concurrency
concurrency<0x20>low job_parser_concurrency

19

The Parser

Token Parser
concurrency<0x20>maximum job_parser_concurrency
concurrency<0x20>medium job_parser_concurrency
concurrency<0x20>minimum job_parser_concurrency
developement<0x20>environment<0x20>name
 development_environment
environment<0x20>prefix data_value
environment<0x20>replace data_value
environment<0x20>suffix data_value
failed<0x20>output file_file_list
include<0x20>data data_include_data
includes<0x20>data data_include_data
include<0x20>data<0x20>with<0x20>name<0x20>name
 named_data_include_data
includes<0x20>data<0x20>with<0x20>name<0x20>name
 named_data_include_data
include<0x20>failed<0x20>output include_file_list
includes<0x20>failed<0x20>output include_file_list
include<0x20>input include_file_list
includes<0x20>input include_file_list
include<0x20>output include_file_list
includes<0x20>output include_file_list
include<0x20>step<0x20>name step_include_parser
includes<0x20>step<0x209>name step_include_parser
include<0x20>steps<0x20>name step_include_parser
includes<0x20>steps<0x20>name step_include_parser
input file_file_list
inputs file_file_list
machine job_parser_machine
machines job_parser_machine
output file_file_list
outputs file_file_list
path data_path
paths data_path
value data_value
values data_value

20

The Parser

job_parser_concurrency

The job_parser_concurrency parser sets a job’s concurrency.

Initialization

If one of high, low, maximum, medium or minimum are not following the
concurrency<0x20> token, parsing fails. If the concurrency of the job was
already set, parsing fails.

Finalization

No checks are done during job_parser_concurrency finalization.

Text Handling

The job_parser_concurrency parser does not permit any text.

Token to Parser Mapping

The job_parser_concurrency parser does not recognize any tokens.

21

The Parser

job_parser_machine

The job_parser_machine parser assigns a machine to the job.

Initialization

No checks are performed during job_parser_machine initialization.

Finalization

No checks are performed during job_parser_machine finalization.

Text Handling

Each line is interpreted as a machine name. The machine database is searched
for a matching machine block name. If none is found, a machine block using the
tcp protocol to the machine named by the text is added to the machine database.
Note that the machine_block parser will fail during initialization if an attempt
is made to add a machine with the same name later. The machine block is linked
to the job.

Token to Parser Mapping

The job_parser_machine parser does not recognize any tokens.

22

The Parser

machine_block

The machine_block parser adds machine blocks to the parser’s machine
database.

Initialization

If there is no name associated with the machine block, parsing fails. The parser’s
machine database is searched for the name. If the name is found, parsing fails.

Finalization

The machine name is added to the parser’s machine database.

Text Handling

The machine_block parser does not permit any text.

Token to Parser Mapping

Token Parser
path path
path<0x20>list path_list

23

The Parser

named_data_include_data

The named_data_include_data includes a data or file list block into a data
block and assigns all values to a single name.

Initialization

If there is no text after the token, parsing fails. The text after the token specifies
the name accepting all the values.

Finalization

No checks are performed during named_data_include_data finalization.

Text Handling

Each line is interpreted to be a name in the parser’s object database. If the name
cannot be found, parsing fails. The type of the found block is checked. If the block
is not a data block or a file list block, parsing fails. The including data block is
searched for the name assigned to all included values. If the name is not found, it
is added to the data block. If the included block is a data block, the names in the
data block are enumerated. If the including name is a data value and the included
name is a path value, or if the including name is a path value and the included
name is a data value, parsing will fail. All the values are copied to the including
name. If the included block is a file list block, the including name is checked to
ensure it is a path value. If it is not, parsing will fail. Otherwise, all paths are cop-
ied to the name.

Token to Parser Mapping

There are no tokens within a named_data_include_data block.

24

The Parser

path

The path parser specifies a list of hops to reach the machine.

Initialization

If there is any additional text after the token, parsing fails.

Finalization

No checks are performed during path finalization.

Text Handling

The path parser does not permit any text.

Token to Parser Mapping

Token Parser
tb:// tb_url
tbi:// tbi_url
tbs:// tbs_url

25

The Parser

path_list

The path_list parser specifies a list of single hop servers.

Initialization

If there is any additional text after the token, parsing fails.

Finalization

No checks are performed during path_list finalization.

Text Handling

The path_list parser does not permit any text.

Token to Parser Mapping

Token Parser
tb:// tb_url
tbi:// tbi_url
tbs:// tbs_url

26

The Parser

project_build_parser

The project_build_parser adds projects and jobs to a project for make
scheduling. Make scheduling may allow the job to be skipped, depending on the
modification times of the input and output. See The Client chapter in the user
guide for more details.

Initialization

If any text follows the token, parsing fails.

Finalization

The project_build_parser has no checks during finalization.

Text Handling

The object database is searched for the text. If the text is not found, parsing fails.
If the matching object is not a job or a project, parsing fails. If the project is
including itself, parsing fails.

Token to Parser Mapping

The project_build_parser does not recognize any tokens.

27

The Parser

project_parser

The project_parser parses project blocks.

Initialization

If there is no name after the token, parsing fails. The parser’s object database is
searched for the name. If a match is found, parsing fails.

Finalization

No checks are performed during project_parser finalization.

Text Handling

The project_parser parser does not permit text.

Token to Parser Mapping

Token Parser
build project_build_parser
builds project_build_parser
test project_test_parser
tests project_test_parser

28

The Parser

project_test_parser

The project_test_parser adds projects and jobs to a project for test sched-
uling. When the project is run, all jobs and projects assigned test scheduling are
run regardless of modification times. See The Client chapter of the user guide for
more details.

Initialization

If any text follows the token, parsing fails.

Finalization

The project_test_parser has no checks during finalization.

Text Handling

The object database is searched for the text. If the text is not found, parsing fails.
If the matching object is not a job or a project, parsing fails. If the project is
including itself, parsing fails.

Token to Parser Mapping

The project_test_parser does not recognize any tokens.

29

The Parser

step_command

The step_command parser parses command blocks.

Initialization

No checks are performed during step_command initialization. The step_command
parser receives a lookup callback from the delegating parser to look up expansion
names. Expansion names have a different meaning if the parent parser is a step
or a job.

Finalization

If no commands were added to the block, parsing will fail.

Text Handling

Unlike the other parsers, which decide to delegate to child parsers based on tokens,
the step_command parser delegates the child block to the command_argument
parser unconditionally. The command_argument parser is passed the command
as text which may include expansions. If the command_argument parser fails,
parsing will fail.

Token to Parser Mapping

There is no mapping; the child block is delegated to the command_argument
parser regardless of the line’s content.

30

The Parser

step_include_parser

The step_include_parser is used to include steps.

Initialization

If no name was specified in the text, parsing fails. If the name cannot be found
in the parser’s object database, parsing fails. If the object corresponding to the
name in the object database is not a step, parsing fails. If a step is including itself,
parsing fails.

Finalization

The commands are copied from the included step to the including step.

Text Handling

Each line is matched to a parameter in the included step. If too many parameters
have been specified, parsing fails. If the parameter in the included step cannot be
matched to a parameter in the including step, parsing fails.

Token to Parser Mapping

The step_include_parser does not recognize any tokens.

31

The Parser

step_parameter

The step_parameter parser adds parameters to a step.

Initialization

If there is any text after the token, parsing fails. If a parameter block has already
been added to the step, parsing fails.

Finalization

The step_parameter parser does not perform any checks during finalization.

Text Handling

If the text contains “<” or”>”, parsing fails. If the text matches another parameter
for the step, parsing fails.

Token to Parser Mapping

The step_parameter parser does not recognize any tokens.

32

The Parser

step_parser

The step_parser parses step blocks.

Initialization

If there is no text following the token, parsing fails. The object database is searched
for the text. If there is a matching object, parsing fails.

Finalization

The step_parser does not have any checks during finalization.

Text Handling

The step_parser does not permit any text.

Token to Parser Mapping

Token Parser
parameter step_parameter
parameters step_parameter
command<0x20>break<0x20>on<0x20>error
 step_command
commands<0x20>break<0x20>on<0x20>error
 step_command
command<0x20>break<0x20>on<0x20>errors
 step_command
commands<0x20>break<0x20>on<0x20>errors
 step_command
command<0x20>complete<0x20>with<0x20>error
 step_command
commands<0x20>complete<0x20>with<0x20>error
 step_command
command<0x20>complete<0x20>with<0x20>errors
 step_command
commands<0x20>complete<0x20>with<0x20>errors
 step_command
command<0x20>ignore<0x20>error step_command
commands<0x20>ignore<0x20>error step_command
command<0x20>ignore<0x20>errors step_command
commands<0x20>ignore<0x20>errors step_command

33

The Parser

Token Parser
include<0x20>step step_include_parser
includes<0x20>step step_include_parser
include<0x20>steps step_include_parser
includes<0x20>steps step_include_parser

34

The Parser

tb_url

The tb_url parser is responsible for parsing default, insecure hops within a
machine block’s path block.

Initialization

There are no checks during tb_url initialization.

Finalization

There are no checks during tb_url finalization.

Text Handling

Only a host name is permitted; a port is optional and is separated from the host
name with the “:” character. A final “/” is permitted; no additional path is allowed.
The parser makes no assumptions about the rules regarding valid host names,
except to assume “:” and “/” are invalid.

Token to Parser Mapping

There are no tokens within a tb_url block.

35

The Parser

tbi_url

The tbi_url parser is responsible for parsing a hop to an agent within a machine
block’s path block.

Initialization

There are no checks during tbi_url initialization.

Finalization

There are no checks during tbi_url finalization.

Text Handling

Only the host name localhost is permitted; a port is not permitted. A final “/”
is permitted; no additional path is allowed.

Token to Parser Mapping

There are no tokens within a tbi_url block.

36

The Parser

tbs_url

The tbs_url parser is responsible for parsing secure hops within a machine
block’s path block.

Initialization

There are no checks during tbs_url initialization.

Finalization

There are no checks during tbs_url finalization.

Text Handling

Only a host name is permitted; a port is optional and is separated from the host
name with the “:” character. A final “/” is permitted; no additional path is allowed.
The parser makes no assumptions about the rules regarding valid host names,
except to assume “:” and “/” are invalid.

37

The Build Log

When the TinyBuilder client completes all the scheduled jobs, it uses the output
from the commands to produce the build log, named build_log.xml. The log
is a utf-8 encoded xml document with indention to be both human and machine
readable. All elements are in the name space:

http://www.tinymanagement.com/TinyBuilder/BuildLog/1.0/

All attributes have no name space. The name space is given the “tb” prefix;
there is no default name space in the document.

The root of the document is the BuildLog element, which contains the ver-
sion of the client running the build along with time and machine information.
The first children of the root element document the machine connections made,
including ip addresses and ssh command lines. Following the connection infor-
mation is a list of job elements, one per job.

Each job element contains machine and timing information. Within each job
element are elements describing the environment of the job, followed by a list of
command elements, followed by elements describing the output.

Each command element contains a list of elements documenting the parame-
ters, the command output and the exit status of the command. Precise timings
are provided as tags within the output and attributes in the exit status element.

The build log is designed to provide at least as much information as would be
observable if the commands were performed interactively. Every action of the
build is traceable on the machine and the client.

The Document Root

The BuildLog element is the root element of the xml document. The build log is
a valid xml document; there is only one root. The element contains the following
mandatory attributes:

version: The version of the client that produced the log.

38

The Build Log

StartTime: The time and day the job was started on the client in the standard
xml format.

BuildHost: The name of the machine running the client.

RunningTime: The number of seconds between the first attempt to connect to
a TinyBuilder machine and disconnection from the last machine. Script parsing
time and log building time are not included.

Connection Information

The connections to each machine are documented at the start of the xml doc-
ument. Each connection is recorded as a machine element. The order of the
machine elements are not specified, but none will occur after the first job ele-
ment. The machine element contains the following mandatory attributes:

name: The name of the corresponding machine block in the script.

PathID: The index of the path within the machine block, starting at zero. If there
is no machine block, the value will be zero.

The machine element has a series of children hop elements, one hop element
per hop in the path block. The hop element has the following attributes:

url: The url specified for the hop. This is the same as the hop in the script. This
attribute is mandatory.

to: The ip address corresponding to the host name in the url attribute. The port
is included. This attribute is optional; it will not be specified if the host name
could not be resolved.

MajorVersion, MinorVersion, build: Specifies the version of the service
processing the hop. This attribute will not be specified if a connection could not
be established.

SshCommandLine: The ssh command line used to tunnel the connection. This
attribute will not be specified if the host name could not be resolved or the con-
nection is not secured.

A hop element may have zero or one error elements. An error element has

39

The Build Log

the following attributes:

type: This may be connection, protocol or license. This attribute is
mandatory.

time: The time of the failure. This attribute is mandatory.

code: An OS specific error code. This attribute is optional.

The error element has a text node as a child containing the description of the
error.

If the type of the error is connection, the code attribute will be set to a
connection error code appropriate for the client’s operating system. The text will
be from the client. The commands in progress, if any, will still appear in the build
log, but there will be no exit status.

If ssh cannot connect to the server, the code attribute will be set to the exit
status of ssh. The text will contain the output of ssh. If the connection is lost
after ssh connects, the failure will be reported the same as a connection failure
without port forwarding.

If the tcp connection is established, but the initial connection process fails, it
is assumed that the server is not a TinyBuilder machine; the type will be set to
connection, not protocol.

If the type of the error is protocol, the text will come from the client; there is
no code attribute. This error only occurs after a successful connection was made
to the machine. It is assumed that a non-TinyBuilder server will not accept the
connection sequence, so the error is due to a bug on the client or the machine.

If the type of the error is license, a premium feature was requested of the
machine, but the license on the machine does not permit the feature. There is
no code attribute; the text will describe the feature requested and the reason for
the error.

The Job List

Each job started as part of the build has a job element in the build log. Projects
do not appear in the build log. The jobs within the build log have no specified

40

The Build Log

order. The job element has the following attributes:

name: The name of the job from the script.

machine: The name of the machine block used to run the job. If there is no
machine block, the name is the host name of the machine used.

PathID: The zero based index of the path used within the machine block. If
there is no machine block, the PathID is zero.

status: The outcome of the job. This may be set to one of succeeded, failed
or error. The job has failed if the attribute is set to either failed or error. The
failed value indicates that a command returned a non-zero exit status that was
not ignored. The error value indicates that a failure occurred when running the
job.

RunningTime: The running time of the job. The start time of the job is when the
job was started on the machine; time waiting for the machine to have capacity
for the job is not included in the running time. The end time is the time the job
failed or immediately after the output archive was written to the client.

concurrency: This is the value of the job’s concurrency. This is the same as the
concurrency value specified in the script.

DelayTime: If the job was delayed due to machine capacity, this attribute is set
to the number of seconds the job was delayed. The attribute is not set if there was
no delay.

DevelopmentEnvironment: If the job has a development environment, this
attribute is set to its name. If there was no development environment, this attri-
bute is not set.

ErrorCode: If the status is set to error and the failure has an associated error
code, this attribute will be set to that error code. If there was no error code, the
attribute will not be set.

ErrorReason: If the status is set to error and the failure has an associated
error message, this attribute will be set to that error message.

ErrorPath: If the status is set to error and the failure has an associated file,
this attribute will be set to the path to that file. If there was no file associated with
the error, the attribute will not be set.

41

The Build Log

If a failure to create the input archive occurs, the job will fail. The ErrorReason
ErrorCode and ErrorPath attributes will be set to document the error. However,
the archive code has dependencies, and that failure would also be reported, some-
what like an exception. In that case, additional information will be provided using
a series of children elements of the job element:

ClientInputError: A sequence of these elements reports the state of the input
archive code, from the top layer to the bottom layer of the code; similar to an
exception. This element will not occur if the entire error can be documented
using the ErrorReason attribute.

ClientInputErrorMessage: This element contains an error message from the
client. It documents what the client was attempting when the failure occurred, in
addition to the string from the ErrorReason attribute

If the job updates the environment to be used by commands in the job, the
changes to the environment are logged using the following elements:

PrefixEnvironment: The value has been prefixed to an existing environment
variable. If the environment variable did not exist, it was added.

ReplaceEnvironment: The value has replaced an existing environment vari-
able. If the environment variable did not exist, it was added.

SuffixEnvironment: The value has been suffixed to an existing environment
variable. If the environment variable did not exist, it was added.

The elements have the following attributes:

name: The name of the updated environment variable.

value: The value used to update the environment variable.

The Command List

Each command line run has a command element as a child of the job element.
The order of the command elements is the same order the commands run within
the job. The command element has the following attributes:

directory: The directory the command ran in. The path is relative to the root
directory of the job. The root of the job is the lowest directory in the file system

42

The Build Log

that includes all the files in the input, all the path value assignments in the job
and all the files in the output.

ExecutableFromEnvironment: It is possible to specify a command by using
a value with the environment expansion option; the value specifies an envi-
ronment variable on the machine in this case. If a command is started this way,
the environment variable named is in the ExecutableFromEnvironment attri-
bute; otherwise the attribute is not set.

executable: The name of the executable run if the executable was not from the
environment. If the executable was derived from the machine environment, the
executable attribute is not set.

ErrorMessage: If the fork failed on a non-Windows machine, or CreateProcess
failed on a Windows server, this attribute will contain an associated message.

ErrorCode: If the fork failed on a non-Windows machine, or CreateProcess
failed on a Windows server, this attribute will specify the machine operating sys-
tem error code.

The command element has zero or more parameter elements as children. The
order of the parameter elements is the same order the parameters were passed
to the command as command line options. They appear before the output and
exit status elements. Each parameter element has the following attributes:

environment: If the name was expanded using the environment expansion
option, the machine environment variable used for the command line value is
specified as an environment attribute. Otherwise, the parameter element has
no environment attribute.

value: If the command line parameter was specified without an environment
expansion option, the parameter element has a value attribute; otherwise,
there is no value attribute. The contents of the value attribute is the text of the
command line parameter.

The Command Output

The output from the command is stored in a series of out and err elements,
which record stdout and stderr respectively. To maintain readability, the number
of Unicode code points within the elements is limited; if the output line contin-
ues to the next element, the element will not have an EOL attribute. Like the xml

43

The Build Log

and the TinyBuilder script, the contents of the command output elements are
utf-8 encoded; there are additional elements to allow non-utf-8 or xml incom-
patible code points to be stored.

The out and err elements are each in the output sequence, but their order rel-
ative to each other is not specified. The elapsed tags can be used to order then
relative to each other. The out and err elements have the following attributes:

offset: The number of output bytes logged before this tag. The stdout and stderr
offsets are tracked separately.

EOL: The name of the EOL character after the end of the tag. This attribute is not
specified if the content doesn’t end with an EOL. The valid names are:

 Name Code Point
 NL 0xA
 NLCR 0xA, 0xD
 LINE TABULATION 0xB
 FORM FEED 0xC
 CR 0xD
 CRNL 0xD, 0xA
 NEXT LINE 0x85
 LINE SEPARATOR 0x2028
 PARAGRAPH SEPARATOR 0x2029

Output bytes are preserved exactly within the build log, but not all bytes are
permitted in the utf-8 encoded xml document. These bytes are recorded using
the InvalidByte or CodePoint tags within the output.

If an output byte would create a byte sequence that is not valid utf-8, the byte
is stored using an InvalidByte element. The InvalidByte element has a sin-
gle attribute, value. The value attribute contains the value of the byte using two
hex digits without a 0x prefix. If the output includes bytes that are valid utf-8
code points, but they are not valid to place in the xml, such as the NUL code
point, the code point is stored in a CodePoint element. The value attribute
records the hex value of the code point, without a 0x prefix. The value attribute
records all the bytes in the code point, not byte by byte.

The TinyBuilder machine receives output from the child process in blocks of
bytes. Since the time these blocks arrive may significantly help with debugging,
an elapsed element is placed at the beginning of each byte sequence received

44

The Build Log

by the service. The elapsed element has the following attributes:

EOF: If the output received an EOF, the attribute is set to true. If no EOF was
received, the attribute is not present.

offset: The number of output bytes logged before this tag.

seconds: The number of seconds between the start of the command and the
receipt of the following output.

If the program emits more output than the TinyBuilder service can buffer, the
service adds a throttle response to the output, which becomes a throttle ele-
ment. By throttling, the service will stop reading output from the process; no out-
put is lost. It can be assumed that the kernel buffers will fill and the process will
block soon after it is throttled; the elapsed tags afterward will reflect the time
the process was blocked. The throttle element has the ThrottleOnElapsed
attribute, which is the number of seconds between the start of the command and
when the output throttling began.

When the command completes on the machine, the exit status is recorded
and is added to the log as a child element of the command element. The exit
status is recorded in one of return, signal, StartupFailed, ClockError,
ChildCommError, ChildRequestError, TerminateFailure or
StatusCheckFailure. All the elements have an elapsed attribute, which is
the number of seconds between the start of the command and the program’s
termination.

When the process completion is detected normally, the exit status of the com-
pleted command is recorded using either a return or a signal element. The
return element is used when the program completes normally and the signal
element is used when a non-Windows process crashed. Both elements have a
value attribute, which is set to the return value in the case of a return element,
or the signal value in the case of a signal element. The signal exit status is
treated the same as a non-zero return value; the command will be considered a
failed command.

If the TinyBuilder service encounters an error while monitoring a child pro-
cess, the process is killed and the error is reported as one of the failure exit status
elements. The failure statuses are all treated as a non-zero return value by the
command; the command will be considered a failed command. These exit status

45

The Build Log

elements are:

StartupFailed: A failure occurred while starting the child process. On
non-Windows platforms, this is the exit status used when the fork succeeded
but the exec failed, which most likely means the executable cannot be found.
The element has an ErrorCode attribute to provide the machine operating sys-
tem error code.

ClockError: The service could not get the current time when handling a
response from the child process. The value attribute is set to the machine oper-
ating system error code.

ChildCommError: The service encountered an error reading output from the
child process. The value attribute is set to the machine operating system error
code.

ChildRequestError: This error means the service was unable to request out-
put from the child process. The value attribute is set to the machine operating
system error code. The message attribute is set to a description of the error.

TerminateFailure: The service was unable to terminate the child process. The
value attribute is set to the machine operating system error code. The message
attribute is set to a description of the error.

StatusCheckFailure: The service was unable to determine the exit status of
the child process. The value attribute is set to the machine operating system
error code. The message attribute is set to a description of the error.

When the connection failed, the job will fail, regardless of the command’s error
handling, and there will be no exit status element.

The Output List

The last children elements of a successful job are a list of output elements. The
output element contains the path of each directory and file requested to be in
the output archive. This element has no attributes. The paths in the output ele-
ment are relative to the root directory of the job. Each directory needed to store
the output will be included in the list.

If an error occurred retrieving the output from a job, the job will fail. After
an output error occurs, an attempt will be made to retrieve files from the failed

46

The Build Log

output list, if any. A failure to retrieve any file from the failed output list will be
ignored.

When an error occurred while the service is building the output archive, an
OutputError element is stored in the xml to document the error. The element
has an error attribute that describes the error. If the output error is due to a
missing file, the error attribute is set to “missing file” and the OutputError
element has an additional attribute, path, which is set to the path of the missing
output file, relative to the job’s root directory.

If the service is able to construct the output archive, but an error occurred
while transferring the archive to the client, an OutputDownloadError element
is added to the build log. The error attribute is set to a message describing the
error.

When any error occurred transferring the output archive to the client, the out-
put list is reset to allow the output archive to be created from the failed output
list. If the reset failed, an OutputResetError element is added to the build log.
An error message may be found in the error attribute of this element.

If the client could not store any of the contents of the output archive, the
ErrorCode, ErrorReason and ErrorPath attributes in the job element will
be set to the error and the job will fail. However, the archive code has dependen-
cies, and that failure would also be reported, somewhat like an exception in top to
bottom order. In that case, additional information will be provided using a series
of ClientOutputError elements as children of the job element. The text of
the ClientOutputError element contains additional information regarding
the error. The element has no attributes.

47

TinyBuilder Service

The TinyBuilder service is divided into two processes. The process that connects
to clients and processes their requests is tbuilder. The process that interfaces
with the operating system to manage tbuilder is tbuilderd. The operating
system starts tbuilderd, which constructs a command line based on operat-
ing system settings and launches tbuilder. The tbuilder process uses inter-
process communication to send messages to tbuilderd, which are forwarded
to the operating system logs. If tbuilderd detects that tbuilder terminated
unexpectedly, it will automatically restart the process. When the operating system
tells tbuilderd to shutdown, tbuilderd abruptly kills tbuilder and shuts
itself down. When tbuilderd starts again, it cleans up after the killed tbuilder.

This chapter describes how tbuilder and tbuilderd work together to act as
a TinyBuilder service that automatically starts and cleanly shuts down as directed
by the operating system. On Linux, there are additional options to run the service
on non-systemd environments, e.g. BusyBox. This chapter will describe how this
can be done.

This chapter also describes the TinyBuilder agent. The agent runs as a fore-
ground process as the user who installed the service; it only runs while the user
is logged into the console of the server. The agent is installed along with the
Windows and macOS service; it is not supported on Linux. The process that
accepts connections and executes their requests is the same tbuilder execut-
able running as the service; in this case, it is running as a foreground process. On
macOS, the same executable tbuilderd interfaces with launchd. On Windows,
the process managing tbuilder is tbagent.exe.

The Work Area

When a job is started, a directory is created to contain that job. The parent direc-
tory of all of these directories is the work area. The TinyBuilder service has com-
plete ownership of the work area; any files or directories placed there are sub-
ject to deletion. The directory used by the job is called the job directory in this
chapter; it is frequently referred to as the job’s work area elsewhere. There is no
ambiguity since each job behaves as if it has its own work area, regardless of other
jobs that may be running. It is only when viewing the TinyBuilder service that it

48

TinyBuilder Service

is apparent that there are multiple, independent directories.

After creating the job directory, tbuilder will extract the input archive into
the directory. After extraction, the job directory will reflect the client side direc-
tory structure. The current directory of all the processes created by the job is the
directory corresponding to the directory containing the script of the job. Since
the script is generally not used as an input file, it is possible for that directory to
be empty. As output files are created, they are placed within the job directory in
the same directories corresponding to the directories on the client. All output
files will be in the job directory; the client will not request any files from any-
where else.

After the job is complete, the job directory is placed on a queue for cleanup by
another thread. The thread wakes every thirty seconds and clears every job direc-
tory from the queue. When the operating system asks tbuilderd to shutdown,
it immediately kills tbuilder, so any jobs in the queue will not be cleaned
and will be left in the work area directory. When tbuilderd is started by the
operating system again, it will delete all the job directories from the work area
before starting tbuilder. This will prevent any job files from being left behind
indefinitely.

The agent makes use of its own work area; it is separate from the service work
area. After cleaning up its work area, the agent creates the agent-port file in
the root of the work area. This file contains the port number used by the agent
in the ascii format. The first time a connection to the agent is requested in the
service, it reads the file to connect to the agent. The Windows agent also creates
an agent-tid file in the root of its work area; this file is used by the installation
to control the agent.

Security

The TinyBuilder service does not do encryption or authentication. Anything that
can connect to the service has full access to its capabilities, which include trans-
ferring files to and from the machine and executing anything the user running
the service can run. Normally, the service install will install the service so that it
listens to tcp port 5017 on all the ip interfaces and will accept connections from
them. The secure install will setup the service so that it only accepts connections
to tcp port 5017 from the loopback interface, making direct remote connections
to tbuilder impossible. Another process, such as sshd, can be used to tunnel a

49

TinyBuilder Service

remote connection to the service over the loopback.

The service will be able to perform any processing that the user running
tbuilder is able to perform. In macOS and Linux, the service runs as the user
that ran the installation. In Windows, the service runs as the SYSTEM user. It is
possible to setup the “TinyBuilder Job Server” to run as another user using the
Windows Services Manager; though a user password will be required to do this.

The agent running on Windows and macOS will run as a foreground process
as the user that ran the installation. The agent only runs while the user is logged
in. It listens to an ephemeral port on the loopback interface; remote connections
are impossible. Since an ephemeral port is used, it would be challenging to tun-
nel to the port, except through the TinyBuilder service as intended.

Abstract Servers

Each TinyBuilder service installation is considered to be a set of abstract servers
for calculating concurrency. A single abstract server is permitted to run a sin-
gle job with minimum concurrency. The installation sets the number of abstract
servers to the number of cores.

The way abstract servers are implemented in tbuilder is by assigning the
server a number of concurrency slots. The number of concurrency slots that
may be used by tbuilder is 256 multiplied by the number passed as the
--server-count command line parameter. The command line parameter is
passed a floating point number, so the number of concurrency slots may be spec-
ified more precisely.

When the client attempts to start a job, it passes the concurrency slots required
by the job. If the number of available concurrency slots are less than the number
of slots requested, the job start attempt fails. A connection flag is set so that the
client will get the number of available concurrency slots with each poll. Once the
poll result indicates the server has enough concurrency slots, the client attempts
to start the job again.

The concurrency to concurrency slot mapping is as follows:

 Job Concurrency Slots Used
 minimum 256
 low 128
 medium 25

50

TinyBuilder Service

 high 10
 maximum 1

The agent uses the same tbuilder as the service, so abstract servers work the
same way. The agent and service do not coordinate their utilization, so the total
utilization of the CPU, memory and disk will be higher if the service and agent
are used simultaneously.

Error Handling

Errors that occur within tbuilder that cannot or should not be reported to cli-
ents are reported by using ipc to transfer messages from tbuilder to tbuilderd.
If messages cannot be sent to tbuilderd without blocking, the messages will be
queued in memory by tbuilder. If the memory queue fills, the tbuilder pro-
cess will panic. As part of panic processing, it will attempt to dump all queued
error messages into the panic.txt file in the current directory. After the dump
attempt completes or fails, the process will exit. The exit status will help explain
why a panic.txt file could not be written if the attempt failed.

Before starting tbuilder, tbuilderd will detect the presence of a
panic.txt and copy its contents to the operating system log. If tbuilder
cannot start, the error is reported by the exit status. The tbuilderd process
will translate the exit status into an appropriate operating system log message.
If tbuilder terminates five times within two minutes, tbuilderd will stop
attempting to restart tbuilder and will terminate.

The possible tbuilder exit codes are:

0: The tbuilder process only exits when there is an error; there is no path to
exit successfully.

1: The error queue filled or an error occurred writing sending messages to tbuil-
derd, and a panic.txt file was created.

2: An error occurred while dumping messages to the panic.txt file.

3: The process could not listen for connections on an interface.

4: Windows Only: The CRT experienced a run time error and there was insuffi-
cient context to handle the error.

51

TinyBuilder Service

5: A bad command line option was passed

6: Cannot setup the error pipe.

7: Cannot setup error handling.

8: Cannot use the network interfaces.

9: Windows Only: Cannot initialize WinSock.

10 - 12: Reserved.

13: Windows Only: A CRT error occurred.

14 - 15: Reserved.

On Linux, tbuilderd will send messages to the syslog using the com.tiny-
management.tbuilder identity. The messages are transferred to tbuilderd
when tbuilder writes to stderr. The stdin and stdout are not used by either
process.

On macOS, tbuilderd determines if it is an agent by counting the number of
sockets passed to it by launchd; launchd will not pass any sockets to the agent.
When running as a service, tbuilderd will use the com.tinymanagement.
tbuilder identity for logging. When running as an agent, it will use com.tiny-
management.tbagent identity. The messages are transferred to tbuilderd
when tbuilder writes to stderr. The stdin and stdout are not used by either
process.

In Windows, tbuilderd.exe and tbagent.exe will send messages to the
event log using the etw interface; the messages are transferred from tbuilder.
exe using a named pipe. The messages from tbuilderd.exe are sent to the
TinyManagement-TinyBuilder-JobService/Admin application log. The
messages from tbagent.exe are sent to the TinyManagement-TinyBuilder-
Agent/Admin application log.

The Path Cache

Whenever tbuilder uses the PATH environment variable to find an executable,
the absolute path to the executable is added to the path cache. The path cache
speeds the startup of job processes since the file system no longer needs to be

52

TinyBuilder Service

searched after the first invocation of a tool chain executable. The price of the path
cache is tbuilder may need to be cycled if any change is made to the tool chain;
any executables that have been relocated will not be found.

Windows Development Environments

The installation uses the Microsoft utility vswhere.exe to find all of the Visual
Studio installations. The install adds the development environments to the
registry; with the name as the development environment name and the value
is the batch to run to setup the development environment. The key used is
DevelopmentEnvironments key in the key:

HKLM\SYSTEM\CurrentControlSet\services\tbuilder\Parameters

During its initialization, tbuilder.exe executes each command and extracts
the environment variables vcvarsall.bat has set. The same key is used when
tbuilder.exe is started by tbagent.exe.

The development environments are rebuilt whenever the TinyBuilder service
is installed. To make use of a new Visual Studio installation, a re-installation of
the service will add the needed values to the registry.

Managing the Service on Linux

At system startup systemd will automatically use the configuration file:

/etc/systemd/system/tbuilder.service

to start tbuilderd; the ExecStart field specifies the command line. When
the system is shutting down, systemd will send a SIGTERM to tbuilderd. The
SIGTERM handler sends a SIGKILL to tbuilder and terminates itself. If any
jobs have not been cleaned up, tbuilderd will clean them up before starting
tbuilder again.

On systems without systemd, tbuilderd can be started and stopped using
other code. The command line options will define how tbuilderd will function;
see the tbuilderd(1) man page for details. To properly stop tbuilderd, send

53

TinyBuilder Service

SIGTERM to the process.

Note that tbuilderd depends on glibc version 2.19, so it cannot run in an
environment with an older glibc or with no glibc available. On those plat-
forms, tbuilder must be run in some other fashion.

Running tbuilder directly in the foreground is supported on Linux, but the
functionality provided by systemd and tbuilderd will be lost. The benefit of
running tbuilder directly is that it is a statically linked executable and does not
have any dependencies, including glibc; so tbuilder is capable of running in
environments that tbuilderd cannot. It is possible for tbuilder to run on any
machine with a 3.0 Linux kernel or later, including configurations like BusyBox.

When tbuilder is run without tbuilderd, other code will be needed to
replace the functionality provided by tbuilderd. This code would need to do
the following:

The work area directory must exist before tbuilder is started.

If a panic.txt is present in the current directory of the tbuilder process,
its contents should be copied somewhere to help diagnose whatever problem
caused the panic. The file should be deleted after it is copied.

Clear the work area directory before starting tbuilder. This is needed to ensure
that useless files do not occupy file system space indefinitely.

Read tbuilder’s stderr; tbuilder assumes it can write to stderr asynchro-
nously, so stderr cannot be redirected to a regular file. If the stderr kernel buffer
fills, tbuilder will queue errors in memory and eventually panic. The messages
printed to stderr are the same messages sent to the operating system logs, so it’s
useful to send the messages somewhere. The messages are NL delimited.

If tbuilder crashes, it should be restarted. However, if it crashes too frequently,
it should not be restarted. It is likely that a useful error message will be written to
stderr when this happens if the execution environment is set up correctly.

The tbuilder process has no normal way to shutdown. When tbuilderd is
requested to shutdown, it kills tbuilder using SIGKILL.

While tbuilder will clean up the work area, the cleanup is asynchronous to
the job execution and it is possible for tbuilder to terminate without complet-
ing its cleanup. Before tbuilderd starts tbuilder, it will delete all job data

54

TinyBuilder Service

from the work area. If tbuilderd is not used, job files will gradually leak as
tbuilder starts and stops unless some other process cleans up the work area.

Managing the Service on macOS

The tbuilderd process is started by launchd as a launch-on-demand daemon
when a connection occurs. tbuilderd uses the xpc api to obtain the sockets it
will pass to tbuilder. The command line parameters passed to tbuilderd is
specified by the ProgramArguments array in the configuration file:

/Library/Application Support/com.tinymanagement.tbuilder

When the system is shutting down, launchd will send a SIGTERM to tbuilderd.
The SIGTERM handler of tbuilderd sends a SIGKILL to tbuilder and termi-
nates itself. If any jobs have not been cleaned up, tbuilderd will clean them up
before starting tbuilder again.

Running tbuilderd or tbuilder outside of launchd is not supported on
macOS.

Managing the Agent on macOS

The tbuilderd process is started by launchd as a launch agent when the user
logs into the console. tbuilderd uses the xpc api to obtain the sockets it will pass
to tbuilder, but when run as a launch agent, there are no sockets to receive. In
this case, launchd creates a socket on an ephemeral port, and saves to port to:

$HOME/Library/Application Support/com.tinymanagement.tbagent
/workarea/agent-port

The command line parameters passed to tbuilderd is specified by the
ProgramArguments array in the configuration file:

$HOME/Library/LaunchAgents/com.tinymanagement.tbagent.plist

When the system is shutting down, launchd will send a SIGTERM to tbuilderd.
The SIGTERM handler of tbuilderd sends a SIGKILL to tbuilder and termi-
nates itself. If any jobs have not been cleaned up, tbuilderd will clean them up

55

TinyBuilder Service

before starting tbuilder again.

Running tbuilderd or tbuilder outside of launchd is not supported on
macOS.

Managing the Service on Windows

At system startup, the Windows Service Control Manager will start the “TinyBuilder
Job Service” by executing tbuilderd.exe as a service. The command line pro-
vided to tbuilder.exe is specified by values in the registry.

When the system is shutting down, tbuilderd.exe is notified by the
Windows Service Control Manager to shutdown. The tbuilderd.exe process
calls TerminateProcess to kill tbuilder.exe and shuts itself down. If any
jobs have not been cleaned up, tbuilderd.exe will clean them up during its
startup before starting tbuilder.exe again.

The tbuilderd.exe executable has no command line interface; it is config-
ured using the registry. All registry values used by tbuilderd.exe are in the
key:

HKLM\SYSTEM\CurrentControlSet\services\tbuilder\Parameters

The values are as follows:

workarea: The absolute path to the root of the work area directory. The directory
must exist before tbuilderd.exe starts tbuilder.exe.

installation: The directory containing the tbuilder.exe and tbuilderd.
exe executables.

servers: A string specifying the number of abstract servers provided by the
service. The format is expected to be floating point formatted with two integers
separated by “.”. For example, “1.5” means that the process may service one job
with a minimum concurrency and one job with a low concurrency at the same
time. The recommended value is the number of cores on the server as a floating
point number.

secure: If set to a DWORD zero, tbuilder.exe will listen to all interfaces
for connections. The firewall must be setup to permit connections first; the
installation will setup a firewall rule permitting remote connections. If non-zero,

56

TinyBuilder Service

tbuilder.exe will only listen to the loopback interface, making remote connec-
tions impossible. Another program, such as sshd.exe may be used to connect to
tbuilder.exe over the loopback.

Running tbuilderd.exe or tbuilder.exe outside of the Windows Service
Control Manager is not supported.

Managing the Agent on Windows

To ensure the agent starts when the user logs in, the TinyBuilder service install
adds the TinyBuilderAgent string value to the:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

key. The agent setup is placed in the:

HKCU\SOFTWARE\TinyManagement\TinyBuilder\Agent

key. The values are as follows:

workarea: The absolute path to the agent’s work area directory. The directory
must exist before tbagent.exe starts tbuilder.exe.

installation: The directory where tbagent.exe and tbuilder.exe are
installed.

servers: A string specifying the number of abstract servers provided by the
agent. The format is expected to be floating point formatted with two integers
separated by “.”. For example, “1.5” means that the process may service one job
with a minimum concurrency and one job with a low concurrency at the same
time. The recommended value is the number of cores on the server as a floating
point number.

The agent makes use of the same development environment registry key as the
service.

Since the agent runs in the foreground, it may be started and stopped like any
Windows application. If an attempt is made to start a second instance of the agent,
the second instance will silently exit.

57

SSH Integration

TinyBuilder has no native authentication and no native encryption. All source
code used in a build could be intercepted easily and man in the middle attacks
could be successfully launched. If the integrity of the network may be relied
upon, all of the preceding are not problems. To secure communication over less
safe networks, TinyBuilder is fully integrated with the port forwarding feature of
ssh.

Without a machine block, the TinyBuilder client connects to the server over its
insecure native protocol. A machine block must be defined to instruct the client
to use ssh port forwarding. For example:

machine build server
 path
 tbs://build-server

The tbs scheme in the url specifies that ssh port forwarding is to be used.
Once defined this way, any job using build server will use ssh to connect to
build-server.

If the machine block specifies that a server is to be connected using ssh port
forwarding, the ssh command will be executed in port forwarding mode using
the -L command line parameter. In Linux and macOS, a name for a unix socket
is created by the client and passed to ssh over the command line. In Windows,
an ephemeral tcp port is allocated and used for the communication between
tbuild.exe and ssh.

For each server connection, the client will start an ssh process. If the client
is not connected to a terminal, then ssh will not have a terminal either; so if
the client is used without a terminal, such as in an automated build, ssh must
be able to connect without human interaction. The ssh-agent can be useful
for this use case. On Linux and macOS, ssh shares the terminal with the client
and the password may be entered in a pop up window within the terminal. On
Windows, the client will open a separate console window for each instance of
ssh; the password may be entered there if one is needed. The agent requires its
own connection; if both the agent and the service are used, two instances of ssh

58

SSH Integration

will be started.

After starting ssh, the client attempts to connect to the socket; ssh does not
provide one before it has authenticated the connection to the server. If ssh
requires a password and a terminal is available, the client will wait two minutes
for the password to be entered and the connection established. If there is no ter-
minal for ssh to use and the client cannot connect within ten seconds, it will give
up and the connection will fail. If ssh terminates before the client can connect
to it, the connection will fail.

To prevent the main thread from blocking a long time, the client performs dns
lookups and connections on a separate thread; while that thread is busy, no other
new connections can be made. If ssh requires a password, jobs on connected
servers will run, but jobs belonging to servers with no connections will wait until
after ssh connects; the wait includes the time it takes for the user to enter the
password. The ssh-agent service can be used to speed up connections.

Specifying a User Name

It is possible that the client may need to use a different user account than the
developer normally uses to connect to the server over ssh. The way to connect
as a different user over ssh is to specify user@server as the destination on the
command line, but specifying the user in the machine block will not work.

There are two ways to provide the client with a server/user name mapping, over
the command line and through an environment variable. To specify the mapping
over the command line, use the option --server-user-list followed by a ‘:’
or ‘;’ separated list of strings in the user@server format. When the client is for-
mulating the ssh command line for its connection to the server, it will search this
list for exact matches to the server part of the user@server string. If the cli-
ent finds a match, it will use the user@server string as the destination instead
of only server. To specify a user name with an environment variable, set the
TB_SSH_SERVER_LIST environment variable to the same ‘:’ or ‘;’ separated list
of strings in the user@server format. The list specified on the command line
will replace the environment variable setting. The intent of the command line
argument is to make it easy to find a user list string that works. The environment
variable is intended to be used as part of the developer’s setup.

59

SSH Integration

Troubleshooting

Since the TinyBuilder client uses the ssh command line, any problems encoun-
tered while running ssh will also happen to TinyBuilder. If the command line
ssh build-server works, the TinyBuilder client should be able to use ssh
without any additional setup within the same shell.

If the command line ssh user@build-server is required, then try the com-
mand line:

tbuild --server-user-list user@build-server main.tb

If that works, then use the platform specific method to add the
TB_SSH_SERVER_LIST environment variable to the environment and set it to
user@build-server. If another server is already identified in the environment,
use ‘:’ or ‘;’ to separate the values:

user@build-server:user2@build-server2.

If ssh states the connection is administratively prohibited, edit the
sshd_config file on the server and ensure AllowTcpForwarding is set to
yes. TinyBuilder’s ssh integration relies on tcp port forwarding; it will not work
without it.

60

Index

A
agent-port file 48
agent-tid file 48

B
base name expansion option 7, 8
build attribute 38
BuildHost attribute 38
BuildLog element 37
build_log.xml 37

C
ChildCommError element 44, 45
ChildRequestError element 44, 45
ClientInputError element 41
ClientInputErrorMessage element 41
ClientOutputError element 46
ClockError element 44, 45
code attribute (error) 39
CodePoint element 43
command_argument parser 7, 8, 29
command element 37, 41, 42, 44
comments 4
concurrency attribute 40

D
data block 2, 4, 6, 9, 10, 11, 12, 19, 23
data_include_data parser 9, 10, 19
data_path parser 9, 11, 19
data value 10, 12, 18, 23
data_value parser 9, 12, 19
DelayTime attribute 40
DevelopmentEnvironment attribute 40
development environment block 13, 52
development_environment parser 13, 19
directory attribute 41
directory name expansion option 7, 8

E
elapsed attribute 44
elapsed element 43, 44
elapsed tag 43, 44
enumerate along expansion option 7, 8
enumerate expansion option 7, 8
enumerate within expansion option 8
environment attribute 42
environment expansion option 7, 8, 42
EOF attribute 44
EOL attribute 42, 43
err element 42, 43
error attribute 46

ErrorCode attribute 40, 41, 42, 45, 46
error element 38, 39
ErrorMessage attribute 42
ErrorPath attribute 40, 41, 46
ErrorReason attribute 40, 41, 46
executable attribute 42
ExecutableFromEnvironment attribute 42

F
file_file_list parser 14, 15, 19
file list block 2, 4, 14, 15, 17, 23
file_list parser 6, 15
file name expansion option 7, 8

H
hop element 38

I
import block 2, 6, 16
import database 4, 16
import_parse parser 6, 16
include_file_list parser 15, 17, 19
InvalidByte element 43

J
job block 2, 4, 6, 7, 13, 18, 19, 20, 21, 26, 28,
29
job directory 47, 48
job element 37, 38, 39, 40, 41, 46
job_parser_concurrency parser 18, 19, 20
job_parser_machine parser 19, 21
job_parser parser 6, 18

M
machine attribute 40
machine block 2, 4, 6, 18, 19, 21, 22, 23, 34,
35, 36, 38, 40, 57, 58
machine_block parser 6, 21, 22
machine database 4, 21, 22
machine element 38
MajorVersion attribute 38
message attribute 45
MinorVersion attribute 38

N
name attribute (job) 40, 41
name attribute (machine) 38
named_data_include_data parser 9, 19, 23
new line 2, 3

O
object database 4, 9, 10, 15, 17, 18, 23, 26,
27, 28, 30, 32
offset attribute 43, 44
out element 42, 43
OutputDownloadError element 46
output element 45
OutputError element 46

61

Index

OutputResetError element 46
P

panic.txt file 50, 53
parameter element 42
path attribute 46
path block 34, 35, 36, 38
PathID attribute (job) 40
PathID attribute (machine) 38
path_list parser 22, 25
path parser 22, 24
path value 10, 11, 18, 23, 42
PrefixEnvironment element 41
project block 2, 4, 6, 26, 27, 28
project_build_parser parser 26, 27
project_parser parser 6, 27
project_test_parser parser 27, 28

R
ReplaceEnvironment element 41
required expansion option 7, 8
return element 44
root block 2, 6
RunningTime attribute 38, 40

S
seconds attribute 44
signal element 44
SshCommandLine attribute 38
ssh port forwarding 57
StartTime attribute 38
StartupFailed element 44, 45
status attribute 40
StatusCheckFailure element 44, 45
step block 2, 4, 6, 7, 18, 19, 29, 30, 31, 32, 33
step_command parser 18, 29, 32
step_include_parser parser 19, 30, 33
step_parameter parser 31, 32
step_parser parser 6, 32
SuffixEnvironment element 41

T
tbi_url parser 24, 25, 35
tbs_url parser 24, 25, 36
tb_url parser 24, 25, 34
TerminateFailure element 44, 45
throttle element 44
ThrottleOnElapsed attribute 44
time attribute (error) 39
to attribute 38
type attribute 39

U
url attribute 38

V
value attribute 41, 42, 43, 44, 45

version attribute 37
W

work area 7, 47, 48, 53, 54, 55, 56

